Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Versatile Symbolic Music-for-Music Modeling via Function Alignment (2506.15548v1)

Published 18 Jun 2025 in cs.SD

Abstract: Many music AI models learn a map between music content and human-defined labels. However, many annotations, such as chords, can be naturally expressed within the music modality itself, e.g., as sequences of symbolic notes. This observation enables both understanding tasks (e.g., chord recognition) and conditional generation tasks (e.g., chord-conditioned melody generation) to be unified under a music-for-music sequence modeling paradigm. In this work, we propose parameter-efficient solutions for a variety of symbolic music-for-music tasks. The high-level idea is that (1) we utilize a pretrained LLM (LM) for both the reference and the target sequence and (2) we link these two LMs via a lightweight adapter. Experiments show that our method achieves superior performance among different tasks such as chord recognition, melody generation, and drum track generation. All demos, code and model weights are publicly available.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.