Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Unifying Multitrack Music Arrangement via Reconstruction Fine-Tuning and Efficient Tokenization (2408.15176v2)

Published 27 Aug 2024 in cs.SD, cs.CL, and eess.AS

Abstract: Automatic music arrangement streamlines the creation of musical variants for composers and arrangers, reducing reliance on extensive music expertise. However, existing methods suffer from inefficient tokenization, underutilization of pre-trained music LMs, and suboptimal fidelity and coherence in generated arrangements. This paper introduces an efficient multitrack music tokenizer for unconditional and conditional symbolic music generation, along with a unified sequence-to-sequence reconstruction fine-tuning objective for pre-trained music LMs that balances task-specific needs with coherence constraints. Our approach achieves state-of-the-art results on band arrangement, piano reduction, and drum arrangement, surpassing task-specific models in both objective metrics and perceptual quality. Additionally, we demonstrate that generative pretraining significantly contributes to the performance across these arrangement tasks, especially when handling long segments with complex alignment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.