Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Targeted Lexical Injection: Unlocking Latent Cross-Lingual Alignment in Lugha-Llama via Early-Layer LoRA Fine-Tuning (2506.15415v1)

Published 18 Jun 2025 in cs.CL

Abstract: LLMs have demonstrated remarkable capabilities, yet their performance in low-resource languages (LRLs), such as Swahili, often lags due to data scarcity and underrepresentation in pre-training. A key challenge is achieving robust cross-lingual lexical alignment, crucial for tasks like translation and cross-lingual information retrieval. This paper introduces Targeted Lexical Injection (TLI), a novel and efficient fine-tuning approach. We first demonstrate that Lugha-Llama-8B-wura, a Swahili-centric LLM, exhibits strong, near-perfect lexical alignment for Swahili-English word pairs in its early internal layers (specifically Layer 2, with ~0.99998 average cosine similarity based on a pilot study), a capability not fully reflected in its final output representations (baseline ~0.32 similarity on our evaluation set). TLI leverages this insight by using Low-Rank Adaptation (LoRA) and a contrastive learning objective to fine-tune the model, specifically targeting embeddings from this empirically identified optimal early layer. Our experiments show that TLI significantly improves the output-level lexical alignment for 623 trained Swahili-English word pairs, increasing average cosine similarity from 0.3211 to 0.4113 (+28.08%, p < 1.33 x 10-240). More importantly, these improvements generalize remarkably well to 63 unseen control word pairs, with similarity increasing from 0.3143 to 0.4033 (+28.32%, p < 7.17 x 10-27). These findings suggest TLI enhances the model's ability to preserve and propagate its inherent early-layer cross-lingual knowledge, offering a parameter-efficient and effective strategy for improving lexical alignment in LRL-focused LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.