Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Active Learning-Guided Seq2Seq Variational Autoencoder for Multi-target Inhibitor Generation (2506.15309v1)

Published 18 Jun 2025 in cs.LG, cs.AI, and q-bio.BM

Abstract: Simultaneously optimizing molecules against multiple therapeutic targets remains a profound challenge in drug discovery, particularly due to sparse rewards and conflicting design constraints. We propose a structured active learning (AL) paradigm integrating a sequence-to-sequence (Seq2Seq) variational autoencoder (VAE) into iterative loops designed to balance chemical diversity, molecular quality, and multi-target affinity. Our method alternates between expanding chemically feasible regions of latent space and progressively constraining molecules based on increasingly stringent multi-target docking thresholds. In a proof-of-concept study targeting three related coronavirus main proteases (SARS-CoV-2, SARS-CoV, MERS-CoV), our approach efficiently generated a structurally diverse set of pan-inhibitor candidates. We demonstrate that careful timing and strategic placement of chemical filters within this active learning pipeline markedly enhance exploration of beneficial chemical space, transforming the sparse-reward, multi-objective drug design problem into an accessible computational task. Our framework thus provides a generalizable roadmap for efficiently navigating complex polypharmacological landscapes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: