Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Research on Graph-Retrieval Augmented Generation Based on Historical Text Knowledge Graphs (2506.15241v1)

Published 18 Jun 2025 in cs.CL

Abstract: This article addresses domain knowledge gaps in general LLMs for historical text analysis in the context of computational humanities and AIGC technology. We propose the Graph RAG framework, combining chain-of-thought prompting, self-instruction generation, and process supervision to create a The First Four Histories character relationship dataset with minimal manual annotation. This dataset supports automated historical knowledge extraction, reducing labor costs. In the graph-augmented generation phase, we introduce a collaborative mechanism between knowledge graphs and retrieval-augmented generation, improving the alignment of general models with historical knowledge. Experiments show that the domain-specific model Xunzi-Qwen1.5-14B, with Simplified Chinese input and chain-of-thought prompting, achieves optimal performance in relation extraction (F1 = 0.68). The DeepSeek model integrated with GraphRAG improves F1 by 11% (0.08-0.19) on the open-domain C-CLUE relation extraction dataset, surpassing the F1 value of Xunzi-Qwen1.5-14B (0.12), effectively alleviating hallucinations phenomenon, and improving interpretability. This framework offers a low-resource solution for classical text knowledge extraction, advancing historical knowledge services and humanities research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.