Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Reference Kernel With Negative Samples For Support Vector One-class Classification (2506.14895v1)

Published 17 Jun 2025 in cs.LG

Abstract: This paper focuses on small-scale one-class classification with some negative samples available. We propose Generalized Reference Kernel with Negative Samples (GRKneg) for One-class Support Vector Machine (OC-SVM). We study different ways to select/generate the reference vectors and recommend an approach for the problem at hand. It is worth noting that the proposed method does not use any labels in the model optimization but uses the original OC-SVM implementation. Only the kernel used in the process is improved using the negative data. We compare our method with the standard OC-SVM and with the binary Support Vector Machine (SVM) using different amounts of negative samples. Our approach consistently outperforms the standard OC-SVM using Radial Basis Function kernel. When there are plenty of negative samples, the binary SVM outperforms the one-class approaches as expected, but we show that for the lowest numbers of negative samples the proposed approach clearly outperforms the binary SVM.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.