Intelligent Routing for Sparse Demand Forecasting: A Comparative Evaluation of Selection Strategies (2506.14810v2)
Abstract: Sparse and intermittent demand forecasting in supply chains presents a critical challenge, as frequent zero-demand periods hinder traditional model accuracy and impact inventory management. We propose and evaluate a Model-Router framework that dynamically selects the most suitable forecasting model-spanning classical, ML, and DL methods for each product based on its unique demand pattern. By comparing rule-based, LightGBM, and InceptionTime routers, our approach learns to assign appropriate forecasting strategies, effectively differentiating between smooth, lumpy, or intermittent demand regimes to optimize predictions. Experiments on the large-scale Favorita dataset show our deep learning (Inception Time) router improves forecasting accuracy by up to 11.8% (NWRMSLE) over strong, single-model benchmarks with 4.67x faster inference time. Ultimately, these gains in forecasting precision will drive substantial reductions in both stockouts and wasteful excess inventory, underscoring the critical role of intelligent, adaptive Al in optimizing contemporary supply chain operations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.