Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity Matters: a Proof-of-Concept for Transformer Memorization on Real-World Data (2506.14704v1)

Published 17 Jun 2025 in cs.CL

Abstract: This paper studies how the model architecture and data configurations influence the empirical memorization capacity of generative transformers. The models are trained using synthetic text datasets derived from the Systematized Nomenclature of Medicine (SNOMED) knowledge graph: triplets, representing static connections, and sequences, simulating complex relation patterns. The results show that embedding size is the primary determinant of learning speed and capacity, while additional layers provide limited benefits and may hinder performance on simpler datasets. Activation functions play a crucial role, and Softmax demonstrates greater stability and capacity. Furthermore, increasing the complexity of the data set seems to improve the final memorization. These insights improve our understanding of transformer memory mechanisms and provide a framework for optimizing model design with structured real-world data.

Summary

We haven't generated a summary for this paper yet.