Papers
Topics
Authors
Recent
2000 character limit reached

A Model-Mediated Stacked Ensemble Approach for Depression Prediction Among Professionals (2506.14459v1)

Published 17 Jun 2025 in cs.LG

Abstract: Depression is a significant mental health concern, particularly in professional environments where work-related stress, financial pressure, and lifestyle imbalances contribute to deteriorating well-being. Despite increasing awareness, researchers and practitioners face critical challenges in developing accurate and generalizable predictive models for mental health disorders. Traditional classification approaches often struggle with the complexity of depression, as it is influenced by multifaceted, interdependent factors, including occupational stress, sleep patterns, and job satisfaction. This study addresses these challenges by proposing a stacking-based ensemble learning approach to improve the predictive accuracy of depression classification among professionals. The Depression Professional Dataset has been collected from Kaggle. The dataset comprises demographic, occupational, and lifestyle attributes that influence mental well-being. Our stacking model integrates multiple base learners with a logistic regression-mediated model, effectively capturing diverse learning patterns. The experimental results demonstrate that the proposed model achieves high predictive performance, with an accuracy of 99.64% on training data and 98.75% on testing data, with precision, recall, and F1-score all exceeding 98%. These findings highlight the effectiveness of ensemble learning in mental health analytics and underscore its potential for early detection and intervention strategies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.