Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RL-Obfuscation: Can Language Models Learn to Evade Latent-Space Monitors? (2506.14261v2)

Published 17 Jun 2025 in cs.LG

Abstract: Latent-space monitors aim to detect undesirable behaviours in LLMs by leveraging internal model representations rather than relying solely on black-box outputs. These methods have shown promise in identifying behaviours such as deception and unsafe completions, but a critical open question remains: can LLMs learn to evade such monitors? To study this, we introduce RL-Obfuscation, in which LLMs are finetuned via reinforcement learning to bypass latent-space monitors while maintaining coherent generations. We apply RL-Obfuscation to LLMs ranging from 7B to 14B parameters and evaluate evasion success against a suite of monitors. We find that token-level latent-space monitors are highly vulnerable to this attack. More holistic monitors, such as max-pooling or attention-based probes, remain robust. Moreover, we show that adversarial policies trained to evade a single static monitor generalise to unseen monitors of the same type. Finally, we study how the policy learned by RL bypasses these monitors and find that the model can also learn to repurpose tokens to mean something different internally.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: