Abstract Meaning Representation for Hospital Discharge Summarization (2506.14101v1)
Abstract: The Achilles heel of LLMs is hallucination, which has drastic consequences for the clinical domain. This is particularly important with regards to automatically generating discharge summaries (a lengthy medical document that summarizes a hospital in-patient visit). Automatically generating these summaries would free physicians to care for patients and reduce documentation burden. The goal of this work is to discover new methods that combine language-based graphs and deep learning models to address provenance of content and trustworthiness in automatic summarization. Our method shows impressive reliability results on the publicly available Medical Information Mart for Intensive III (MIMIC-III) corpus and clinical notes written by physicians at Anonymous Hospital. rovide our method, generated discharge ary output examples, source code and trained models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.