Papers
Topics
Authors
Recent
2000 character limit reached

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering (2506.13814v1)

Published 14 Jun 2025 in cs.GR, cs.LG, and eess.IV

Abstract: Graphics rendering applications increasingly leverage neural networks in tasks such as denoising, supersampling, and frame extrapolation to improve image quality while maintaining frame rates. The temporal coherence inherent in these tasks presents an opportunity to reuse intermediate results from previous frames and avoid redundant computations. Recent work has shown that caching intermediate features to be reused in subsequent inferences is an effective method to reduce latency in diffusion models. We extend this idea to real-time rendering and present ReFrame, which explores different caching policies to optimize trade-offs between quality and performance in rendering workloads. ReFrame can be applied to a variety of encoder-decoder style networks commonly found in rendering pipelines. Experimental results show that we achieve 1.4x speedup on average with negligible quality loss in three real-time rendering tasks. Code available: https://ubc-aamodt-group.github.io/reframe-layer-caching/

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.