Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

VLM-SFD: VLM-Assisted Siamese Flow Diffusion Framework for Dual-Arm Cooperative Manipulation (2506.13428v1)

Published 16 Jun 2025 in cs.RO

Abstract: Dual-arm cooperative manipulation holds great promise for tackling complex real-world tasks that demand seamless coordination and adaptive dynamics. Despite substantial progress in learning-based motion planning, most approaches struggle to generalize across diverse manipulation tasks and adapt to dynamic, unstructured environments, particularly in scenarios involving interactions between two objects such as assembly, tool use, and bimanual grasping. To address these challenges, we introduce a novel VLM-Assisted Siamese Flow Diffusion (VLM-SFD) framework for efficient imitation learning in dual-arm cooperative manipulation. The proposed VLM-SFD framework exhibits outstanding adaptability, significantly enhancing the ability to rapidly adapt and generalize to diverse real-world tasks from only a minimal number of human demonstrations. Specifically, we propose a Siamese Flow Diffusion Network (SFDNet) employs a dual-encoder-decoder Siamese architecture to embed two target objects into a shared latent space, while a diffusion-based conditioning process-conditioned by task instructions-generates two-stream object-centric motion flows that guide dual-arm coordination. We further design a dynamic task assignment strategy that seamlessly maps the predicted 2D motion flows into 3D space and incorporates a pre-trained vision-LLM (VLM) to adaptively assign the optimal motion to each robotic arm over time. Experiments validate the effectiveness of the proposed method, demonstrating its ability to generalize to diverse manipulation tasks while maintaining high efficiency and adaptability. The code and demo videos are publicly available on our project website https://sites.google.com/view/vlm-sfd/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.