Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Socratic RL: A Novel Framework for Efficient Knowledge Acquisition through Iterative Reflection and Viewpoint Distillation (2506.13358v1)

Published 16 Jun 2025 in cs.AI, cs.LG, and cs.MA

Abstract: Current Reinforcement Learning (RL) methodologies for LLMs often rely on simplistic, outcome-based reward signals (e.g., final answer correctness), which limits the depth of learning from each interaction. This paper introduces Socratic Reinforcement Learning (Socratic-RL), a novel, process-oriented framework designed to address this limitation. Socratic-RL operates on the principle that deeper understanding is achieved by reflecting on the causal reasons for errors and successes within the reasoning process itself. The framework employs a decoupled "Teacher-Student" architecture, where a "Teacher AI" analyzes interaction histories, extracts causal insights, and formulates them into structured "viewpoints." These viewpoints, acting as distilled guidance, are then used by a "Student AI" to enhance its subsequent reasoning. A key innovation is the iterative self-improvement of the Teacher AI, enabling its reflective capabilities to evolve through a meta-learning loop. To manage the accumulation of knowledge, a distillation mechanism compresses learned viewpoints into the Student's parameters. By focusing on process rather than just outcome, Socratic-RL presents a pathway toward enhanced sample efficiency, superior interpretability, and a more scalable architecture for self-improving AI systems. This paper details the foundational concepts, formal mechanisms, synergies, challenges, and a concrete research roadmap for this proposed framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: