Papers
Topics
Authors
Recent
2000 character limit reached

Vector Ontologies as an LLM world view extraction method (2506.13252v1)

Published 16 Jun 2025 in cs.AI and cs.IR

Abstract: LLMs possess intricate internal representations of the world, yet these latent structures are notoriously difficult to interpret or repurpose beyond the original prediction task. Building on our earlier work (Rothenfusser, 2025), which introduced the concept of vector ontologies as a framework for translating high-dimensional neural representations into interpretable geometric structures, this paper provides the first empirical validation of that approach. A vector ontology defines a domain-specific vector space spanned by ontologically meaningful dimensions, allowing geometric analysis of concepts and relationships within a domain. We construct an 8-dimensional vector ontology of musical genres based on Spotify audio features and test whether an LLM's internal world model of music can be consistently and accurately projected into this space. Using GPT-4o-mini, we extract genre representations through multiple natural language prompts and analyze the consistency of these projections across linguistic variations and their alignment with ground-truth data. Our results show (1) high spatial consistency of genre projections across 47 query formulations, (2) strong alignment between LLM-inferred genre locations and real-world audio feature distributions, and (3) evidence of a direct relationship between prompt phrasing and spatial shifts in the LLM's inferred vector ontology. These findings demonstrate that LLMs internalize structured, repurposable knowledge and that vector ontologies offer a promising method for extracting and analyzing this knowledge in a transparent and verifiable way.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.