Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A non-commutative algorithm for multiplying 4x4 matrices using 48 non-complex multiplications (2506.13242v4)

Published 16 Jun 2025 in cs.SC

Abstract: The quest for non-commutative matrix multiplication algorithms in small dimensions has seen a lot of recent improvements recently. In particular, the number of scalar multiplications required to multiply two $4\times4$ matrices was first reduced in \cite{Fawzi:2022aa} from 49 (two recursion levels of Strassen's algorithm) to 47 but only in characteristic 2 or more recently to 48 in \cite{alphaevolve} but over complex numbers. We propose an algorithm in 48 multiplications with only rational coefficients, hence removing the complex number requirement. It was derived from the latter one, under the action of an isotropy which happen to project the algorithm on the field of rational numbers. We also produce a straight line program of this algorithm, reducing the leading constant in the complexity, as well as an alternative basis variant of it, leading to an algorithm running in $\frac{19}{16} n{2+\frac{\log_2 3}{2}} +o\left(n{2+\frac{log_2 3}{2}}\right)$ operations over any ring containing an inverse of 2.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.