A Memetic Walrus Algorithm with Expert-guided Strategy for Adaptive Curriculum Sequencing (2506.13092v1)
Abstract: Adaptive Curriculum Sequencing (ACS) is essential for personalized online learning, yet current approaches struggle to balance complex educational constraints and maintain optimization stability. This paper proposes a Memetic Walrus Optimizer (MWO) that enhances optimization performance through three key innovations: (1) an expert-guided strategy with aging mechanism that improves escape from local optima; (2) an adaptive control signal framework that dynamically balances exploration and exploitation; and (3) a three-tier priority mechanism for generating educationally meaningful sequences. We formulate ACS as a multi-objective optimization problem considering concept coverage, time constraints, and learning style compatibility. Experiments on the OULAD dataset demonstrate MWO's superior performance, achieving 95.3% difficulty progression rate (compared to 87.2% in baseline methods) and significantly better convergence stability (standard deviation of 18.02 versus 28.29-696.97 in competing algorithms). Additional validation on benchmark functions confirms MWO's robust optimization capability across diverse scenarios. The results demonstrate MWO's effectiveness in generating personalized learning sequences while maintaining computational efficiency and solution quality.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.