Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards the Autonomous Optimization of Urban Logistics: Training Generative AI with Scientific Tools via Agentic Digital Twins and Model Context Protocol (2506.13068v2)

Published 16 Jun 2025 in cs.MA

Abstract: Optimizing urban freight logistics is critical for developing sustainable, low-carbon cities. Traditional methods often rely on manual coordination of simulation tools, optimization solvers, and expert-driven workflows, limiting their efficiency and scalability. This paper presents an agentic system architecture that leverages the model context protocol (MCP) to orchestrate multi-agent collaboration among scientific tools for autonomous, simulation-informed optimization in urban logistics. The system integrates generative AI agents with domain-specific engines - such as Gurobi for optimization and AnyLogic for agent-based simulation - forming a generative digital twin capable of reasoning, planning, and acting across multimodal freight networks. By incorporating integrated chatbots, retrieval-augmented generation, and structured memory, the framework enables agents to interpret user intent from natural language conversations, retrieve relevant datasets and models, coordinate solvers and simulators, and execute complex workflows. We demonstrate this approach through a freight decarbonization case study, showcasing how MCP enables modular, interoperable, and adaptive agent behavior across diverse toolchains. The results reveal that our system transforms digital twins from static visualizations into autonomous, decision-capable systems, advancing the frontiers of urban operations research. By enabling context-aware, generative agents to operate scientific tools automatically and collaboratively, this framework supports more intelligent, accessible, and dynamic decision-making in transportation planning and smart city management.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube