Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-architecture universal feature coding via distribution alignment (2506.12737v1)

Published 15 Jun 2025 in cs.CV and cs.DC

Abstract: Feature coding has become increasingly important in scenarios where semantic representations rather than raw pixels are transmitted and stored. However, most existing methods are architecture-specific, targeting either CNNs or Transformers. This design limits their applicability in real-world scenarios where features from both architectures coexist. To address this gap, we introduce a new research problem: cross-architecture universal feature coding (CAUFC), which seeks to build a unified codec that can effectively compress features from heterogeneous architectures. To tackle this challenge, we propose a two-step distribution alignment method. First, we design the format alignment method that unifies CNN and Transformer features into a consistent 2D token format. Second, we propose the feature value alignment method that harmonizes statistical distributions via truncation and normalization. As a first attempt to study CAUFC, we evaluate our method on the image classification task. Experimental results demonstrate that our method achieves superior rate-accuracy trade-offs compared to the architecture-specific baseline. This work marks an initial step toward universal feature compression across heterogeneous model architectures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.