Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SC-SOT: Conditioning the Decoder on Diarized Speaker Information for End-to-End Overlapped Speech Recognition (2506.12672v1)

Published 15 Jun 2025 in cs.SD, cs.CL, and eess.AS

Abstract: We propose Speaker-Conditioned Serialized Output Training (SC-SOT), an enhanced SOT-based training for E2E multi-talker ASR. We first probe how SOT handles overlapped speech, and we found the decoder performs implicit speaker separation. We hypothesize this implicit separation is often insufficient due to ambiguous acoustic cues in overlapping regions. To address this, SC-SOT explicitly conditions the decoder on speaker information, providing detailed information about "who spoke when". Specifically, we enhance the decoder by incorporating: (1) speaker embeddings, which allow the model to focus on the acoustic characteristics of the target speaker, and (2) speaker activity information, which guides the model to suppress non-target speakers. The speaker embeddings are derived from a jointly trained E2E speaker diarization model, mitigating the need for speaker enrollment. Experimental results demonstrate the effectiveness of our conditioning approach on overlapped speech.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.