Papers
Topics
Authors
Recent
2000 character limit reached

Between Predictability and Randomness: Seeking Artistic Inspiration from AI Generative Models (2506.12634v1)

Published 14 Jun 2025 in cs.CL

Abstract: Artistic inspiration often emerges from language that is open to interpretation. This paper explores the use of AI-generated poetic lines as stimuli for creativity. Through analysis of two generative AI approaches--lines generated by Long Short-Term Memory Variational Autoencoders (LSTM-VAE) and complete poems by LLMs--I demonstrate that LSTM-VAE lines achieve their evocative impact through a combination of resonant imagery and productive indeterminacy. While LLMs produce technically accomplished poetry with conventional patterns, LSTM-VAE lines can engage the artist through semantic openness, unconventional combinations, and fragments that resist closure. Through the composition of an original poem, where narrative emerged organically through engagement with LSTM-VAE generated lines rather than following a predetermined structure, I demonstrate how these characteristics can serve as evocative starting points for authentic artistic expression.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.