Wasserstein-Barycenter Consensus for Cooperative Multi-Agent Reinforcement Learning (2506.12497v2)
Abstract: Cooperative multi-agent reinforcement learning (MARL) demands principled mechanisms to align heterogeneous policies while preserving the capacity for specialized behavior. We introduce a novel consensus framework that defines the team strategy as the entropic-regularized $p$-Wasserstein barycenter of agents' joint state--action visitation measures. By augmenting each agent's policy objective with a soft penalty proportional to its Sinkhorn divergence from this barycenter, the proposed approach encourages coherent group behavior without enforcing rigid parameter sharing. We derive an algorithm that alternates between Sinkhorn-barycenter computation and policy-gradient updates, and we prove that, under standard Lipschitz and compactness assumptions, the maximal pairwise policy discrepancy contracts at a geometric rate. Empirical evaluation on a cooperative navigation case study demonstrates that our OT-barycenter consensus outperforms an independent learners baseline in convergence speed and final coordination success.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.