Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Private Continuous-Time Synthetic Trajectory Generation via Mean-Field Langevin Dynamics (2506.12203v1)

Published 13 Jun 2025 in cs.LG and stat.ML

Abstract: We provide an algorithm to privately generate continuous-time data (e.g. marginals from stochastic differential equations), which has applications in highly sensitive domains involving time-series data such as healthcare. We leverage the connections between trajectory inference and continuous-time synthetic data generation, along with a computational method based on mean-field Langevin dynamics. As discretized mean-field Langevin dynamics and noisy particle gradient descent are equivalent, DP results for noisy SGD can be applied to our setting. We provide experiments that generate realistic trajectories on a synthesized variation of hand-drawn MNIST data while maintaining meaningful privacy guarantees. Crucially, our method has strong utility guarantees under the setting where each person contributes data for \emph{only one time point}, while prior methods require each person to contribute their \emph{entire temporal trajectory}--directly improving the privacy characteristics by construction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.