Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Learning Before Filtering: Real-Time Hardware Learning at the Detector Level (2506.11981v1)

Published 13 Jun 2025 in hep-ex and cs.LG

Abstract: Advances in sensor technology and automation have ushered in an era of data abundance, where the ability to identify and extract relevant information in real time has become increasingly critical. Traditional filtering approaches, which depend on a priori knowledge, often struggle to adapt to dynamic or unanticipated data features. Machine learning offers a compelling alternative-particularly when training can occur directly at or near the detector. This paper presents a digital hardware architecture designed for real-time neural network training, specifically optimized for high-throughput data ingestion. The design is described in an implementation-independent manner, with detailed analysis of each architectural component and their performance implications. Through system parameterization, the study explores trade-offs between processing speed, model complexity, and hardware resource utilization. Practical examples illustrate how these parameters affect applicability across various use cases. A proof-of-concept implementation on an FPGA demonstrates in-situ training, confirming that computational accuracy is preserved relative to conventional software-based approaches. Moreover, resource estimates indicate that current-generation FPGAs can train networks of approximately 3,500 neurons per chip. The architecture is both scalable and adaptable, representing a significant advancement toward integrating learning directly within detector systems and enabling a new class of extreme-edge, real-time information processing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.