Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the performance of multi-fidelity and reduced-dimensional neural emulators for inference of physiologic boundary conditions

Published 13 Jun 2025 in stat.ML, cs.CE, cs.LG, math.ST, q-bio.QM, and stat.TH | (2506.11683v1)

Abstract: Solving inverse problems in cardiovascular modeling is particularly challenging due to the high computational cost of running high-fidelity simulations. In this work, we focus on Bayesian parameter estimation and explore different methods to reduce the computational cost of sampling from the posterior distribution by leveraging low-fidelity approximations. A common approach is to construct a surrogate model for the high-fidelity simulation itself. Another is to build a surrogate for the discrepancy between high- and low-fidelity models. This discrepancy, which is often easier to approximate, is modeled with either a fully connected neural network or a nonlinear dimensionality reduction technique that enables surrogate construction in a lower-dimensional space. A third possible approach is to treat the discrepancy between the high-fidelity and surrogate models as random noise and estimate its distribution using normalizing flows. This allows us to incorporate the approximation error into the Bayesian inverse problem by modifying the likelihood function. We validate five different methods which are variations of the above on analytical test cases by comparing them to posterior distributions derived solely from high-fidelity models, assessing both accuracy and computational cost. Finally, we demonstrate our approaches on two cardiovascular examples of increasing complexity: a lumped-parameter Windkessel model and a patient-specific three-dimensional anatomy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.