Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Effect of Stochasticity in Score-Based Diffusion Sampling: a KL Divergence Analysis (2506.11378v1)

Published 13 Jun 2025 in cs.LG

Abstract: Sampling in score-based diffusion models can be performed by solving either a probability flow ODE or a reverse-time stochastic differential equation (SDE) parameterized by an arbitrary stochasticity parameter. In this work, we study the effect of stochasticity on the generation process through bounds on the Kullback-Leibler (KL) divergence and complement the analysis with numerical and analytical examples. Our results apply to general forward SDEs with additive noise and Lipschitz-continuous score functions, and quantify how errors from the prior distribution and score approximation propagate under different choices of the stochasticity parameter. The theoretical bounds are derived using log-Sobolev inequalities for the marginals of the forward process, which enable a more effective control of the KL divergence decay along sampling. For exact score functions, we find that stochasticity acts as an error-correcting mechanism, decreasing KL divergence along the sampling trajectory. For an approximate score function, there is a trade-off between error correction and score error amplification, so that stochasticity can either improve or worsen the performance, depending on the structure of the score error. Numerical experiments on simple datasets and a fully analytical example are included to illustrate and enlighten the theoretical results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube