Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Knowledge Graph Embeddings with Representing Relations as Annular Sectors (2506.11099v1)

Published 6 Jun 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Knowledge graphs (KGs), structured as multi-relational data of entities and relations, are vital for tasks like data analysis and recommendation systems. Knowledge graph completion (KGC), or link prediction, addresses incompleteness of KGs by inferring missing triples (h, r, t). It is vital for downstream applications. Region-based embedding models usually embed entities as points and relations as geometric regions to accomplish the task. Despite progress, these models often overlook semantic hierarchies inherent in entities. To solve this problem, we propose SectorE, a novel embedding model in polar coordinates. Relations are modeled as annular sectors, combining modulus and phase to capture inference patterns and relation attributes. Entities are embedded as points within these sectors, intuitively encoding hierarchical structure. Evaluated on FB15k-237, WN18RR, and YAGO3-10, SectorE achieves competitive performance against various kinds of models, demonstrating strengths in semantic modeling capability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.