Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Assessing the Impact of Anisotropy in Neural Representations of Speech: A Case Study on Keyword Spotting (2506.11096v1)

Published 6 Jun 2025 in cs.SD, cs.AI, cs.CL, and eess.AS

Abstract: Pretrained speech representations like wav2vec2 and HuBERT exhibit strong anisotropy, leading to high similarity between random embeddings. While widely observed, the impact of this property on downstream tasks remains unclear. This work evaluates anisotropy in keyword spotting for computational documentary linguistics. Using Dynamic Time Warping, we show that despite anisotropy, wav2vec2 similarity measures effectively identify words without transcription. Our results highlight the robustness of these representations, which capture phonetic structures and generalize across speakers. Our results underscore the importance of pretraining in learning rich and invariant speech representations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.