Papers
Topics
Authors
Recent
2000 character limit reached

Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training (2506.10952v1)

Published 12 Jun 2025 in cs.CL, cs.AI, and cs.LG

Abstract: We introduce~\textsc{Domain2Vec}, a novel approach that decomposes any dataset into a linear combination of several \emph{meta-domains}, a new concept designed to capture the key underlying features of datasets. \textsc{Domain2Vec} maintains a vocabulary of meta-domains and uses a classifier to decompose any given dataset into a domain vector that corresponds to a distribution over this vocabulary. These domain vectors enable the identification of the optimal data mixture for LLM (LM) pretraining in a training-free manner under the \emph{\textbf{D}istribution \textbf{A}lignment \textbf{A}ssumption} (DA${2}$), which suggests that when the data distributions of the training set and the validation set are better aligned, a lower validation loss is achieved. Moreover, \textsc{Domain2vec} can be seamlessly integrated into previous works to model the relationship between domain vectors and LM performance, greatly enhancing the efficiency and scalability of previous methods. Extensive experiments demonstrate that \textsc{Domain2Vec} helps find the data mixture that enhances downstream task performance with minimal computational overhead. Specifically, \textsc{Domain2Vec} achieves the same validation loss on Pile-CC using only $51.5\%$ of the computation required when training on the original mixture of The Pile dataset. Under equivalent compute budget, \textsc{Domain2Vec} improves downstream performance by an average of $2.83\%$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com