Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Slimming Down LLMs Without Losing Their Minds (2506.10885v1)

Published 12 Jun 2025 in cs.CL and cs.AI

Abstract: This paper investigates and validates the impact of fine-tuning on LLM performance, focusing on parameter-efficient methods (LoRA and QLoRA). We evaluate model capabilities across three key domains: (1) commonsense reasoning (HellaSwag), (2) mathematical reasoning (GSM8K), and (3) multi-domain knowledge (MMLU-CS). Our findings demonstrate that: (1) LoRA-based methods effectively improve task-specific performance while maintaining computational efficiency, and (2) performance strongly depends on alignment between fine-tuning dataset and benchmark tasks. The study provides both theoretical insights into parameter-efficient mechanisms and practical guidance for developers implementing efficient LLM adaptation with limited resources.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube