Papers
Topics
Authors
Recent
2000 character limit reached

Joint Beamforming with Extremely Large Scale RIS: A Sequential Multi-Agent A2C Approach (2506.10815v2)

Published 12 Jun 2025 in eess.SY and cs.SY

Abstract: It is a challenging problem to jointly optimize the base station (BS) precoding matrix and the reconfigurable intelligent surface (RIS) phases simultaneously in a RIS-assisted multiple-user multiple-input-multiple-output (MU-MIMO) scenario when the size of the RIS becomes extremely large. In this paper, we propose a deep reinforcement learning algorithm called sequential multi-agent advantage actor-critic (A2C) to solve this problem. In addition, the discrete phase of RISs, imperfect channel state information (CSI), and channel correlations between users are taken into consideration. The computational complexity is also analyzed, and the performance of the proposed algorithm is compared with the zero-forcing (ZF) beamformer in terms of the sum spectral efficiency (SE). It is noted that the computational complexity of the proposed algorithm is lower than the benchmark, while the performance is better than the benchmark. Throughout simulations, it is also found that the proposed algorithm is robust to medium channel estimation error.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.