Papers
Topics
Authors
Recent
2000 character limit reached

IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain (2506.10730v3)

Published 12 Jun 2025 in cs.CV

Abstract: Recently, the rapid advancements of vision-LLMs, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub