Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Generative Human Video Coding with Implicit Motion Transformation (2506.10453v1)

Published 12 Jun 2025 in cs.CV and eess.IV

Abstract: Beyond traditional hybrid-based video codec, generative video codec could achieve promising compression performance by evolving high-dimensional signals into compact feature representations for bitstream compactness at the encoder side and developing explicit motion fields as intermediate supervision for high-quality reconstruction at the decoder side. This paradigm has achieved significant success in face video compression. However, compared to facial videos, human body videos pose greater challenges due to their more complex and diverse motion patterns, i.e., when using explicit motion guidance for Generative Human Video Coding (GHVC), the reconstruction results could suffer severe distortions and inaccurate motion. As such, this paper highlights the limitations of explicit motion-based approaches for human body video compression and investigates the GHVC performance improvement with the aid of Implicit Motion Transformation, namely IMT. In particular, we propose to characterize complex human body signal into compact visual features and transform these features into implicit motion guidance for signal reconstruction. Experimental results demonstrate the effectiveness of the proposed IMT paradigm, which can facilitate GHVC to achieve high-efficiency compression and high-fidelity synthesis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.