Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Using Vision Language Models to Detect Students' Academic Emotion through Facial Expressions (2506.10334v1)

Published 12 Jun 2025 in cs.CV and cs.AI

Abstract: Students' academic emotions significantly influence their social behavior and learning performance. Traditional approaches to automatically and accurately analyze these emotions have predominantly relied on supervised machine learning algorithms. However, these models often struggle to generalize across different contexts, necessitating repeated cycles of data collection, annotation, and training. The emergence of Vision-LLMs (VLMs) offers a promising alternative, enabling generalization across visual recognition tasks through zero-shot prompting without requiring fine-tuning. This study investigates the potential of VLMs to analyze students' academic emotions via facial expressions in an online learning environment. We employed two VLMs, Llama-3.2-11B-Vision-Instruct and Qwen2.5-VL-7B-Instruct, to analyze 5,000 images depicting confused, distracted, happy, neutral, and tired expressions using zero-shot prompting. Preliminary results indicate that both models demonstrate moderate performance in academic facial expression recognition, with Qwen2.5-VL-7B-Instruct outperforming Llama-3.2-11B-Vision-Instruct. Notably, both models excel in identifying students' happy emotions but fail to detect distracted behavior. Additionally, Qwen2.5-VL-7B-Instruct exhibits relatively high performance in recognizing students' confused expressions, highlighting its potential for practical applications in identifying content that causes student confusion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.