Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Benchmarking Zero-Shot Facial Emotion Annotation with Large Language Models: A Multi-Class and Multi-Frame Approach in DailyLife (2502.12454v1)

Published 18 Feb 2025 in cs.CV, cs.AI, cs.LG, and cs.HC

Abstract: This study investigates the feasibility and performance of using LLMs to automatically annotate human emotions in everyday scenarios. We conducted experiments on the DailyLife subset of the publicly available FERV39k dataset, employing the GPT-4o-mini model for rapid, zero-shot labeling of key frames extracted from video segments. Under a seven-class emotion taxonomy ("Angry," "Disgust," "Fear," "Happy," "Neutral," "Sad," "Surprise"), the LLM achieved an average precision of approximately 50%. In contrast, when limited to ternary emotion classification (negative/neutral/positive), the average precision increased to approximately 64%. Additionally, we explored a strategy that integrates multiple frames within 1-2 second video clips to enhance labeling performance and reduce costs. The results indicate that this approach can slightly improve annotation accuracy. Overall, our preliminary findings highlight the potential application of zero-shot LLMs in human facial emotion annotation tasks, offering new avenues for reducing labeling costs and broadening the applicability of LLMs in complex multimodal environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)