Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition (2506.10184v1)

Published 11 Jun 2025 in cs.LG and cs.AI

Abstract: This study conducts an empirical examination of MLP networks investigated through a rigorous methodical experimentation process involving three diverse datasets: TinyFace, Heart Disease, and Iris. Study Overview: The study includes three key methods: a) a baseline training using the default settings for the Multi-Layer Perceptron (MLP), b) feature selection using Genetic Algorithm (GA) based refinement c) Principal Component Analysis (PCA) based dimension reduction. The results show important information on how such techniques affect performance. While PCA had showed benefits in low-dimensional and noise-free datasets GA consistently increased accuracy in complex datasets by accurately identifying critical features. Comparison reveals that feature selection and dimensionality reduction play interdependent roles in enhancing MLP performance. The study contributes to the literature on feature engineering and neural network parameter optimization, offering practical guidelines for a wide range of machine learning tasks

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.