Papers
Topics
Authors
Recent
2000 character limit reached

Detecção da Psoríase Utilizando Visão Computacional: Uma Abordagem Comparativa Entre CNNs e Vision Transformers (2506.10119v1)

Published 11 Jun 2025 in cs.CV, cs.AI, and cs.LG

Abstract: This paper presents a comparison of the performance of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) in the task of multi-classifying images containing lesions of psoriasis and diseases similar to it. Models pre-trained on ImageNet were adapted to a specific data set. Both achieved high predictive metrics, but the ViTs stood out for their superior performance with smaller models. Dual Attention Vision Transformer-Base (DaViT-B) obtained the best results, with an f1-score of 96.4%, and is recommended as the most efficient architecture for automated psoriasis detection. This article reinforces the potential of ViTs for medical image classification tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.