When Meaning Stays the Same, but Models Drift: Evaluating Quality of Service under Token-Level Behavioral Instability in LLMs (2506.10095v1)
Abstract: We investigate how LLMs respond to prompts that differ only in their token-level realization but preserve the same semantic intent, a phenomenon we call prompt variance. We propose Prompt-Based Semantic Shift (PBSS), a diagnostic framework for measuring behavioral drift in LLMs under semantically equivalent prompt rewordings. Applied to ten constrained tasks, PBSS reveals consistent, model-specific response shifts, suggesting statistical regularities linked to tokenization and decoding. These results highlight an overlooked dimension of model evaluation stability under rephrasing and suggest that tokenization strategies and decoding dynamics may contribute to post-training quality of service instability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.