Papers
Topics
Authors
Recent
2000 character limit reached

When Meaning Stays the Same, but Models Drift: Evaluating Quality of Service under Token-Level Behavioral Instability in LLMs (2506.10095v1)

Published 11 Jun 2025 in cs.CL

Abstract: We investigate how LLMs respond to prompts that differ only in their token-level realization but preserve the same semantic intent, a phenomenon we call prompt variance. We propose Prompt-Based Semantic Shift (PBSS), a diagnostic framework for measuring behavioral drift in LLMs under semantically equivalent prompt rewordings. Applied to ten constrained tasks, PBSS reveals consistent, model-specific response shifts, suggesting statistical regularities linked to tokenization and decoding. These results highlight an overlooked dimension of model evaluation stability under rephrasing and suggest that tokenization strategies and decoding dynamics may contribute to post-training quality of service instability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.