Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring (2506.09742v1)

Published 11 Jun 2025 in cs.LG and cs.AI

Abstract: Monitoring Machine Learning (ML) models in production environments is crucial, yet traditional approaches often yield verbose, low-interpretability outputs that hinder effective decision-making. We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on LLMs, significantly enhancing the interpretability of monitoring outputs. Central to our approach is a Decision Procedure module that simulates feature engineering through three key steps: Refactor, Break Down, and Compile. The Refactor step improves data representation to better capture feature semantics, allowing the LLM to focus on salient aspects of the monitoring data while reducing noise and irrelevant information. Break Down decomposes complex information for detailed analysis, and Compile integrates sub-insights into clear, interpretable outputs. This process leads to a more deterministic planning approach, reducing dependence on LLM-generated planning, which can sometimes be inconsistent and overly general. The combination of feature engineering-driven planning and selective LLM utilization results in a robust decision support system, capable of providing highly interpretable and actionable insights. Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines across several domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.