Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Too Big to Think: Capacity, Memorization, and Generalization in Pre-Trained Transformers (2506.09099v2)

Published 10 Jun 2025 in cs.LG, cs.AI, and cs.CL

Abstract: The relationship between memorization and generalization in LLMs remains an open area of research, with growing evidence that the two are deeply intertwined. In this work, we investigate this relationship by pre-training a series of capacity-limited Transformer models from scratch on two synthetic character-level tasks designed to separately probe generalization (via arithmetic extrapolation) and memorization (via factual recall). We observe a consistent trade-off: small models extrapolate to unseen arithmetic cases but fail to memorize facts, while larger models memorize but fail to extrapolate. An intermediate-capacity model exhibits a similar shift toward memorization. When trained on both tasks jointly, no model (regardless of size) succeeds at extrapolation. These findings suggest that pre-training may intrinsically favor one learning mode over the other. By isolating these dynamics in a controlled setting, our study offers insight into how model capacity shapes learning behavior and offers broader implications for the design and deployment of small LLMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Joshua Barron (1 paper)
  2. Devin White (6 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com