Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Finetuning Tabular Foundation Models (2506.08982v2)

Published 10 Jun 2025 in cs.LG

Abstract: Foundation models are an emerging research direction in tabular deep learning. Notably, TabPFNv2 recently claimed superior performance over traditional GBDT-based methods on small-scale datasets using an in-context learning paradigm, which does not adapt model parameters to target datasets. However, the optimal finetuning approach for adapting tabular foundational models, and how this adaptation reshapes their internal mechanisms, remains underexplored. While prior works studied finetuning for earlier foundational models, inconsistent findings and TabPFNv2's unique architecture necessitate fresh investigation. To address these questions, we first systematically evaluate various finetuning strategies on diverse datasets. Our findings establish full finetuning as the most practical solution for TabPFNv2 in terms of time-efficiency and effectiveness. We then investigate how finetuning alters TabPFNv2's inner mechanisms, drawing an analogy to retrieval-augmented models. We reveal that the success of finetuning stems from the fact that after gradient-based adaptation, the dot products of the query-representations of test objects and the key-representations of in-context training objects more accurately reflect their target similarity. This improved similarity allows finetuned TabPFNv2 to better approximate target dependency by appropriately weighting relevant in-context samples, improving the retrieval-based prediction logic. From the practical perspective, we managed to finetune TabPFNv2 on datasets with up to 50K objects, observing performance improvements on almost all tasks. More precisely, on academic datasets with I.I.D. splits, finetuning allows TabPFNv2 to achieve state-of-the-art results, while on datasets with gradual temporal shifts and rich feature sets, TabPFNv2 is less stable and prior methods remain better.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: