Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fusing Cross-modal and Uni-modal Representations: A Kronecker Product Approach (2506.08645v1)

Published 10 Jun 2025 in cs.LG

Abstract: Cross-modal embeddings, such as CLIP, BLIP and their variants, have achieved promising results in aligning representations across modalities. However, these embeddings could underperform compared to state-of-the-art single-modality embeddings on modality-specific tasks. On the other hand, single-modality embeddings excel in their domains but lack cross-modal alignment capabilities. In this work, we focus on the problem of unifying cross-modality and single-modality embeddings to achieve the performance of modality-expert embedding within individual modalities while preserving cross-modal alignment. To this end, we propose RP-KrossFuse, a method that leverages a random projection-based Kronecker product to integrate cross-modal embeddings with single-modality embeddings. RP-KrossFuse aims to fuse the sample-pairwise similarity scores of the fused embeddings and operates efficiently in a specified kernel space and supports scalable implementations via random Fourier features for shift-invariant kernels such as the Gaussian kernel. We demonstrate the effectiveness of RP-KrossFuse through several numerical experiments, combining CLIP embeddings with uni-modal image and text embeddings. Our numerical results indicate that RP-KrossFuse achieves competitive modality-specific performance while retaining cross-modal alignment, bridging the gap between cross-modal and single-modality embeddings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube