A Good CREPE needs more than just Sugar: Investigating Biases in Compositional Vision-Language Benchmarks (2506.08227v1)
Abstract: We investigate 17 benchmarks (e.g. SugarCREPE, VALSE) commonly used for measuring compositional understanding capabilities of vision-LLMs (VLMs). We scrutinize design choices in their construction, including data source (e.g. MS-COCO) and curation procedures (e.g. constructing negative images/captions), uncovering several inherent biases across most benchmarks. We find that blind heuristics (e.g. token-length, log-likelihood under a LLM) perform on par with CLIP models, indicating that these benchmarks do not effectively measure compositional understanding. We demonstrate that the underlying factor is a distribution asymmetry between positive and negative images/captions, induced by the benchmark construction procedures. To mitigate these issues, we provide a few key recommendations for constructing more robust vision-language compositional understanding benchmarks, that would be less prone to such simple attacks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.