Papers
Topics
Authors
Recent
2000 character limit reached

A Good CREPE needs more than just Sugar: Investigating Biases in Compositional Vision-Language Benchmarks (2506.08227v1)

Published 9 Jun 2025 in cs.CV

Abstract: We investigate 17 benchmarks (e.g. SugarCREPE, VALSE) commonly used for measuring compositional understanding capabilities of vision-LLMs (VLMs). We scrutinize design choices in their construction, including data source (e.g. MS-COCO) and curation procedures (e.g. constructing negative images/captions), uncovering several inherent biases across most benchmarks. We find that blind heuristics (e.g. token-length, log-likelihood under a LLM) perform on par with CLIP models, indicating that these benchmarks do not effectively measure compositional understanding. We demonstrate that the underlying factor is a distribution asymmetry between positive and negative images/captions, induced by the benchmark construction procedures. To mitigate these issues, we provide a few key recommendations for constructing more robust vision-language compositional understanding benchmarks, that would be less prone to such simple attacks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 11 likes about this paper.