Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FairDICE: Fairness-Driven Offline Multi-Objective Reinforcement Learning (2506.08062v1)

Published 9 Jun 2025 in cs.LG and cs.AI

Abstract: Multi-objective reinforcement learning (MORL) aims to optimize policies in the presence of conflicting objectives, where linear scalarization is commonly used to reduce vector-valued returns into scalar signals. While effective for certain preferences, this approach cannot capture fairness-oriented goals such as Nash social welfare or max-min fairness, which require nonlinear and non-additive trade-offs. Although several online algorithms have been proposed for specific fairness objectives, a unified approach for optimizing nonlinear welfare criteria in the offline setting-where learning must proceed from a fixed dataset-remains unexplored. In this work, we present FairDICE, the first offline MORL framework that directly optimizes nonlinear welfare objective. FairDICE leverages distribution correction estimation to jointly account for welfare maximization and distributional regularization, enabling stable and sample-efficient learning without requiring explicit preference weights or exhaustive weight search. Across multiple offline benchmarks, FairDICE demonstrates strong fairness-aware performance compared to existing baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com