Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

W4S4: WaLRUS Meets S4 for Long-Range Sequence Modeling (2506.07920v1)

Published 9 Jun 2025 in cs.LG, eess.AS, eess.IV, and eess.SP

Abstract: State Space Models (SSMs) have emerged as powerful components for sequence modeling, enabling efficient handling of long-range dependencies via linear recurrence and convolutional computation. However, their effectiveness depends heavily on the choice and initialization of the state matrix. In this work, we build on the SaFARi framework and existing WaLRUS SSMs to introduce a new variant, W4S4 (WaLRUS for S4), a new class of SSMs constructed from redundant wavelet frames. WaLRUS admits a stable diagonalization and supports fast kernel computation without requiring low-rank approximations, making it both theoretically grounded and computationally efficient. We show that WaLRUS retains information over long horizons significantly better than HiPPO-based SSMs, both in isolation and when integrated into deep architectures such as S4. Our experiments demonstrate consistent improvements across delay reconstruction tasks, classification benchmarks, and long-range sequence modeling, confirming that high-quality, structured initialization enabled by wavelet-based state dynamic offers substantial advantages over existing alternatives. WaLRUS provides a scalable and versatile foundation for the next generation of deep SSM-based models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.