Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MoE-MLoRA for Multi-Domain CTR Prediction: Efficient Adaptation with Expert Specialization (2506.07563v3)

Published 9 Jun 2025 in cs.IR and cs.AI

Abstract: Personalized recommendation systems must adapt to user interactions across different domains. Traditional approaches like MLoRA apply a single adaptation per domain but lack flexibility in handling diverse user behaviors. To address this, we propose MoE-MLoRA, a mixture-of-experts framework where each expert is first trained independently to specialize in its domain before a gating network is trained to weight their contributions dynamically. We evaluate MoE-MLoRA across eight CTR models on Movielens and Taobao, showing that it improves performance in large-scale, dynamic datasets (+1.45 Weighed-AUC in Taobao-20) but offers limited benefits in structured datasets with low domain diversity and sparsity. Further analysis of the number of experts per domain reveals that larger ensembles do not always improve performance, indicating the need for model-aware tuning. Our findings highlight the potential of expert-based architectures for multi-domain recommendation systems, demonstrating that task-aware specialization and adaptive gating can enhance predictive accuracy in complex environments. The implementation and code are available in our GitHub repository.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.