Papers
Topics
Authors
Recent
2000 character limit reached

LiteVLM: A Low-Latency Vision-Language Model Inference Pipeline for Resource-Constrained Environments (2506.07416v1)

Published 9 Jun 2025 in cs.LG and cs.AI

Abstract: This paper introduces an efficient Vision-LLM (VLM) pipeline specifically optimized for deployment on embedded devices, such as those used in robotics and autonomous driving. The pipeline significantly reduces the computational overhead by jointly leveraging patch selection to filter irrelevant camera views, a token selection module to reduce input sequence length for the LLM, and speculative decoding to accelerate token generation. Evaluation on the NVIDIA DRIVE Thor platform for automonous driving application, our pipeline achieves $2.5\times$ end-to-end latency reduction without compromising task accuracy. The speed-up further increases to $3.2\times$ when applying FP8 post-training quantization. These results demonstrate our pipeline as a viable solution for enabling real-time VLM deployment in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.