Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Enhanced Consistency Bi-directional GAN(CBiGAN) for Malware Anomaly Detection (2506.07372v1)

Published 9 Jun 2025 in cs.CR

Abstract: Static analysis, a cornerstone technique in cybersecurity, offers a noninvasive method for detecting malware by analyzing dormant software without executing potentially harmful code. However, traditional static analysis often relies on biased or outdated datasets, leading to gaps in detection capabilities against emerging malware threats. To address this, our study focuses on the binary content of files as key features for malware detection. These binary contents are transformed and represented as images, which then serve as inputs to deep learning models. This method takes into account the visual patterns within the binary data, allowing the model to analyze potential malware effectively. This paper introduces the application of the CBiGAN in the domain of malware anomaly detection. Our approach leverages the CBiGAN for its superior latent space mapping capabilities, critical for modeling complex malware patterns by utilizing a reconstruction error-based anomaly detection method. We utilized several datasets including both portable executable (PE) files as well as Object Linking and Embedding (OLE) files. We then evaluated our model against a diverse set of both PE and OLE files, including self-collected malicious executables from 214 malware families. Our findings demonstrate the robustness of this innovative approach, with the CBiGAN achieving high Area Under the Curve (AUC) results with good generalizability, thereby confirming its capability to distinguish between benign and diverse malicious files with reasonably high accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube