Papers
Topics
Authors
Recent
2000 character limit reached

Semantic-preserved Augmentation with Confidence-weighted Fine-tuning for Aspect Category Sentiment Analysis (2506.07148v1)

Published 8 Jun 2025 in cs.CL

Abstract: LLM is an effective approach to addressing data scarcity in low-resource scenarios. Recent existing research designs hand-crafted prompts to guide LLM for data augmentation. We introduce a data augmentation strategy for the aspect category sentiment analysis (ACSA) task that preserves the original sentence semantics and has linguistic diversity, specifically by providing a structured prompt template for an LLM to generate predefined content. In addition, we employ a post-processing technique to further ensure semantic consistency between the generated sentence and the original sentence. The augmented data increases the semantic coverage of the training distribution, enabling the model better to understand the relationship between aspect categories and sentiment polarities, enhancing its inference capabilities. Furthermore, we propose a confidence-weighted fine-tuning strategy to encourage the model to generate more confident and accurate sentiment polarity predictions. Compared with powerful and recent works, our method consistently achieves the best performance on four benchmark datasets over all baselines.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.