Papers
Topics
Authors
Recent
2000 character limit reached

Non-Intrusive Load Monitoring Based on Image Load Signatures and Continual Learning (2506.06637v1)

Published 7 Jun 2025 in cs.LG, cs.AI, cs.CV, and eess.SP

Abstract: Non-Intrusive Load Monitoring (NILM) identifies the operating status and energy consumption of each electrical device in the circuit by analyzing the electrical signals at the bus, which is of great significance for smart power management. However, the complex and changeable load combinations and application environments lead to the challenges of poor feature robustness and insufficient model generalization of traditional NILM methods. To this end, this paper proposes a new non-intrusive load monitoring method that integrates "image load signature" and continual learning. This method converts multi-dimensional power signals such as current, voltage, and power factor into visual image load feature signatures, and combines deep convolutional neural networks to realize the identification and classification of multiple devices; at the same time, self-supervised pre-training is introduced to improve feature generalization, and continual online learning strategies are used to overcome model forgetting to adapt to the emergence of new loads. This paper conducts a large number of experiments on high-sampling rate load datasets, and compares a variety of existing methods and model variants. The results show that the proposed method has achieved significant improvements in recognition accuracy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.